

Journal of Organometallic Chemistry 580 (1999) 137-144

Journal ofOrgano metallic Chemistry

Bispentamethylcyclopentadienyl uranium(IV) thiolate compounds. Synthesis and reactions with CO₂ and CS₂

Christophe Lescop^a, Thérèse Arliguie^a, Monique Lance^b, Martine Nierlich^b, Michel Ephritikhine^{a,*}

^a Laboratoire de Chimie de l'Uranium, Service de Chimie Moléculaire, CNRS URA 331, CEA Saclay, F-91191 Gif sur Yvette, France ^b Laboratoire de Cristallochimie, Service de Chimie Moléculaire, CNRS URA 331, CEA Saclay, F-91191 Gif sur Yvette, France

Received 1 September 1998

Abstract

The bisthiolate uranium complexes $[U(Cp^*)_2(SR)_2]$ (R = Me, 'Pr, 'Bu, Ph) were synthesized by treatment of $[U(Cp^*)_2(Cl)_2]$ with NaSR; the crystal structure of $[U(Cp^*)_2(SMe)_2]$ was determined. Their reactions with CO₂ or CS₂ gave the insertion derivatives $[U(Cp^*)_2(SR)(E_2CSR)]$ (E = O and R = 'Bu; E = S and R = Me, 'Pr or 'Bu) and $[U(Cp^*)_2(E_2CSR)_2]$ (E = O and R = 'Bu; E = S and R = Me or 'Bu); $[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$ was characterized by its crystal structure. Treatment of this latter with CO₂ gave the mixed insertion complex $[U(Cp^*)_2(O_2CS'Bu)(S_2CS'Bu)]$. Thermolysis of the insertion compounds led to the reverse elimination reaction of CO₂ and CS₂. Reduction of $[U(Cp^*)_2(O_2CS'Bu)_2]$ with Na(Hg) afforded the corresponding U(III) anionic complex. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Uranium(IV) thiolate compounds; Carbon dioxide; Carbon disulfide; Insertion reactions; Thiocarbonate compounds

1. Introduction

Uranium thiolates have been practically ignored for a long time, certainly because the U-S bond between a hard metal and a soft atom was reputed to be unstable. In fact, uranium exhibits a strong affinity for sulfur. In the organometallic series, we reported the synthesis and structure of the monocyclooctatetraenyl triscyclopentadienyl complexes and $[U(COT)(SR)_2]$ $(COT = \eta - C_8 H_8)$ and [U-[1] $(C_5H_4R')_3(SR)$] (R' = H, 'Bu, SiMe₃) [2]. The first studies on $[U(Cp)_3(S^iPr)]$ (Cp = η -C₅H₅) showed that the thiolate ligand could undergo substitution reactions and that unsaturated molecules could be inserted into the U-S bond. In particular, treatment of $[U(Cp)_3(S'Pr)]$ with carbon dioxide led to the formation of $[U(Cp)_3(O_2CS^iPr)]$, the first compound resulting from the insertion of CO₂ into a metal-sulfur bond [2]. However, this complex could not be isolated in a pure form because of the facile reverse decarboxylation reaction. With the aim of getting a better knowledge of such insertion complexes, we turned our attention to the family of bispentamethylcyclopentadienvl uranium thiolates; the $[U(Cp^*)_2(X)_2]$ compounds $(Cp^* = \eta - C_5 Me_5)$ are regarded, for most of the X groups, as models in organouranium chemistry [3]. Here we present the synthesis and characterization of the $[U(Cp^*)_2(SR)_2]$ complexes and their CO₂ and CS₂ insertion derivatives $[U(Cp^*)_2(SR)(E_2CSR)], [U(Cp^*)_2$ $(E_2CS^tBu)_2$ (E = O or S) and $[U(Cp^*)_2(O_2CS^tBu)]$ crystal $(S_2CS^tBu)],$ with the structures of $[U(Cp^*)_2(SMe)_2]$ and $[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$; we also describe some reactions of the insertion compounds.

^{*} Corresponding author. Tel.: + 33-1-69-08-64-36; fax: + 33-1-69-08-66-40.

E-mail address: ephri@nanga.saclay.cea.fr (M. Ephritikhine)

Fig. 1. X-ray crystal structure of 1a.

2. Results and discussion

2.1. Synthesis of $[U(Cp^*)_2(SR)_2]$ 1 and the X-ray crystal structure of $[U(Cp^*)_2(SMe)_2]$

The first actinide thiolates, the homoleptic com-ⁿBu) pounds $[U(SR)_4] \quad (R = Et,$ [4] and the organometallic derivatives $[Th(Cp^*)_2(S^nPr)_2]$ [5] and $[U(Cp)_2(S^tBu)_2]$ [6] were made by protonolysis of methyl or amide precursors with RSH. After the successful synthesis of the complexes [U(COT)(SR)₂] [1] and $[U(Cp)_3(SR)]$ [2], the compounds $[U(Cp^*)_2(SR)_2]$ 1 $(R = Me, 1a; R = {}^{i}Pr, 1b; R = {}^{t}Bu, 1c and R = Ph, 1d)$ were prepared by treating $[U(Cp^*)_2(Cl)_2]$ with a slight excess of the corresponding thiolate NaSR. The reactions were performed in THF or toluene and the red crystalline products were isolated in a 75–85% yield. The chlorothiolate compounds $[U(Cp^*)_2(Cl)(SR)]$, which were intermediates in the formation of 1, could not be isolated in pure form, being in equilibrium with 1 and $[U(Cp^*)_2(Cl)_2]$. Thus, the same mixture of $[U(Cp^*)_2(Cl)(S'Pr)]$, $[U(Cp^*)_2(Cl)_2]$ and 1b in the proportions 90:5:5 was formed either by the reaction of $[U(Cp^*)_2(Cl)_2]$ and one equivalent of NaS'Pr or by comproportionation of $[U(Cp^*)_2(Cl)_2]$ and 1b (NMR experiments).

The X-ray crystal structure of **1a** is shown in Fig. 1 and selected bond distances and angles are listed in Table 1. The U atom lies on the 2-fold axis of symmetry. The mononuclear molecule is found in the familiar pseudo tetrahedral bent sandwich configuration; the geometry of the UCp₂^{*} fragment is unexceptional. The U–S bond distance of 2.639(3) Å and the U–S–C(11) angle of 108.1(4)° are similar to those found in other uranium thiolates, in particular [U(Cp)₃(SMe)] where U–S = 2.695(4) Å and U–S–C = 107.2(1)° [2]; in the thorium complex [Th(Cp*)₂(SⁿBu)₂], these values are equal to 2.718(3) Å and 108.3(5)° [5].

2.2. Synthesis of the CO_2 and CS_2 insertion compounds. Crystal structure of $[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$

Reactions of the alkylthiolates 1 are summarized in Scheme 1. Treatment of 1a or 1b with CO₂ in THF (1 atm., 20°C) led to a mixture of unidentified products. On exposure to carbon dioxide, 1c was cleanly transformed into $[U(Cp^*)_2(O_2CS'Bu)_2]$ 3c which was obtained as a red microcrystalline powder in an almost quantitative yield, after evaporation of the THF solu-

Table 1

Selected bond distances (Å) and angles (°) with estimated standard deviations for [U(Cp*)₂(SMe)₂] 1a and [U(Cp*)₂(S'Bu)(S₂CS'Bu)] 4c

[U(Cp*) ₂ (SMe) ₂] 1a					
U–S	2.639(3)	U–C(1)	2.77(1)	U–C(2)	2.71(1)
U–C(3)	2.71(1)	U–C(4)	2.73(1)	U-C(5)	2.75(1)
U-1 ^a	2.47(2)	S-C(11)	1.81(1)		
S-U-1	109.9(4)	S-U-1A ^b	98.0(3)	S–U–SA	97.2(4)
1-U-1A	137.6(4)	U-S-C(11)	108.1(5)		
$[U(Cp^*)_2(S^tBu)(S_2CS)]$	S ^t Bu)] 4 c				
U–S(1)	2.643(4)	U–S(2)	2.885(4)	U–S(3)	2.821(5)
U–C(1)	2.74(1)	U–C(2)	2.76(2)	U-C(3)	2.75(2)
U-C(4)	2.73(2)	U-C(5)	2.72(2)	U–C(11)	2.76(2)
U–C(12)	2.78(2)	U-C(13)	2.80(2)	U–C(14)	2.71(2)
U-C(15)	2.75(1)	$U-1^{a}$	2.47(2)	$U-2^{a}$	2.49(2)
S(1)–C(21)	1.83(2)	S(2)–C(25)	1.66(2)	S(3)–C(25)	1.72(1)
S(4)–C(25)	1.73(2)	S(4)–C(26)	1.82(2)		
S(1)–U–S(3)	78.2(1)	S(2)–U–S(3)	62.0(1)	S(1)–U–1	101.3(2)
S(1)-U-2	101.5(3)	S(2)–U–1	95.5(2)	S(2)–U–2	92.4(1)
S(3)-U-1	108.6(3)	S(3)–U–2	115.7(3)	1-U-2	133.3(3)
U-S(1)-C(21)	139.8(2)				

^a 1 and 2 are the centroids of the Cp rings.

^b Symmetry code A: -x, y, -z.

Scheme 1. Formation and reactions of the CO₂ and CS₂ insertion compounds.

tion at room temperature (r.t.). To our knowledge, 3c is the first complex isolated from the insertion of carbon dioxide into a metal-sulfur bond. In the triscyclopentadienyl series, [U(Cp)₃(O₂CSⁱPr)] was formed in a quantitative yield from $[U(Cp)_3(S^iPr)]$ but could not be obtained in pure crystalline form because of its easy decarboxylation at 20°C under vacuum [2]. Formation of 3c was very rapid at 20°C, being achieved in a few minutes, and the monoinsertion compound $[U(Cp^*)_2(S^tBu)(O_2CS^tBu)]$ 2c, which is a likely intermediate, was not observed by NMR. However, an equilibrating mixture of 2c, 1c and 3c in the proportions of 80:10:10 was formed by comproportionation of 1c and 3c (NMR experiments).

Insertion of carbon disulfide into d-transition metal-

Fig. 2. X-ray crystal structure of 4c.

sulfur bonds has already been reported [7]. In the case of f-element thiolates, it was found that CS₂ reacted with the homoleptic uranium thiolate $[Li(DME)]_4$ $[U(SCH_2CH_2S)_4]$ (DME = dimethoxyethane) to give $[Li(DME)_2]_2[S_2CSCH_2CH_2SCS_2]$ as an isolable product, but it was not possible to discover whether the insertion took place at the Li–S or U–S bonds [8]. Although difficult to explain mechanistically, formation of $[U(Cp)_2(S_2CS'Pr)_2]$ by treatment of $[U(Cp)_3(S'Pr)]$ with CS₂ provided clear evidence of insertion of carbon disulfide into the U–S bond; however, the trithiocarbonate compound was not obtained in pure form [2].

Complexes 1 reacted with a slight excess of CS_2 in toluene to give the monoinsertion derivatives $[U(Cp^*)_2(SR)(S_2CSR)]$ 4. The rate of this reaction was strongly dependent on the size of the R group: formation of 4a (R = Me) and 4b (R = i Pr) was achieved after a few hours at 70°C whereas synthesis of 4c ($R = {}^{t}Bu$) required 2 days to proceed to completion. Dark brown crystals of 4c were isolated in an 89% yield; 4c is the first uranium trithiocarbonate to have been crystallographically characterized (Fig. 2, Table 1). The molecule adopts the classical bent sandwich structure of the $[M(Cp^*)_2(X)_2(Y)]$ compounds. The U, C(21), C(25), S(1), S(2) and S(4) atoms are coplanar within + 0.04 Å and this plane is almost perpendicular [91(1)°] to that defined by U and the two centroids of the Cp* rings. The U-S(1) bond distance of 2.643(4) Å is similar to those determined in other uranium thiolates whereas the U-S(2) and U-S(3) bond lengths are longer, 2.885(4) and 2.821(5) Å, respectively and can be compared with the distances of ca. 2.81 Å found in uranium dithiocarbamate complexes [9]. The C(25)-S bond lengths of the trithiocarbonate ligand are almost identical, with an average value of 1.70(4) Å, and are shorter than the C(21)-S(1) and C(26)-S(4) distances [1.83(2)] and 1.82(2) Å].

Table 2Elemental analyses of the compounds

Compound	Analyses % found (calc.)			
	С	Н	S	
[U(Cp*) ₂ (SMe) ₂] 1a	43.58 (43.84)	5.87 (6.02)	10.35 (10.64)	
$[U(Cp^*)_2(S'Pr)_2]$ 1b	47.26 (47.40)	6.87 (6.73)	9.47 (9.73)	
$[U(Cp^*)_2(S'Bu)_2]$ 1c	48.72 (48.96)	6.88 (7.04)	9.13 (9.34)	
$[U(Cp^*)_2(SPh)_2]$ 1d	52.63 (52.88)	5.43 (5.55)	8.58 (8.82)	
$[U(Cp^*)_2(O_2CS'Bu)_2] 3c$	46.77 (46.50)	6.24 (6.24)	8.07 (8.28)	
$[U(Cp^*)_2(S^tBu)(S_2CS^tBu)] 4c$	45.38 (45.65)	6.21 (6.34)	16.64 (16.81)	
$[U(Cp^*)_2(S_2CSMe)_2]$ 5a	37.92 (38.18)	4.76 (4.81)	25.60 (25.48)	
$[U(Cp^*)_2(S_2CS'Bu)_2]$ 5c	42.61 (42.94)	5.61 (5.77)	22.83 (22.93)	
$[U(Cp^*)_2(O_2CS'Bu)(S_2CS'Bu)] 6$	44.51 (44.65)	5.95 (6.00)	15.72 (15.89)	
$[U(Cp^*)_2(I)(S_2CS'Bu)]$ 7	37.39 (37.50)	4.79 (4.91)	11.82 (12.01)	
$Na[U(Cp^*)_2(O_2CS^tBu)_2]$ 8	45.26 (45.16)	6.22 (6.06)	7.84 (8.04)	

Table 3				
¹ H-NMR	spectra	of th	ne com	pounds ^a

Compounds	Solvent	Cp* groups ^b	SR groups
[U(Cp*) ₂ (SMe) ₂] 1a	Benzene d_6	10.9	-20.7 (6 H)
$[U(Cp^*)_2(S'Pr)_2]$ 1b	Benzene d_6	11.8	-18.1 (12 H), -33.7 (2 H)
$[U(Cp^*)_2(S'Bu)_2]$ 1c	Benzene d_6	12.2	-17.7 (18 H)
$[U(Cp^*)_2(SPh)_2]$ 1d	Benzene d_6	13.3	1.32 (2 H, t, J = 7 Hz, p-Ph), 0.4 (4 H, m-Ph), -33.6 (4 H, o-Ph)
[U(Cp*) ₂ (Cl)(SMe)] ^c	THF- d_8	12.25	-45.2 (3 H)
$[U(Cp^*)_2(Cl)(S^iPr)]^c$	Benzene d_6	12.4	-23 (6 H), -61 (1 H)
$[U(Cp^*)_2(Cl)(S'Bu)]^c$	THF- d_8	13.3	-21.7 (9 H)
$[U(Cp^*)_2(S^tBu)(O_2CS^tBu)] 2c$	$\text{THF-}d_8$	10.6	-10.3 (9 H), -12.1 (9 H)
$[U(Cp^*)_2(O_2CS'Bu)_2] 3c$	Benzene d_6	6.9	-4.9 (18 H)
$[U(Cp^*)_2(SMe)(S_2CSMe)] 4a$	THF-d ₈	10.8	-1.0 (3 H), -12.2 (3 H)
$[U(Cp^*)_2(S'Pr)(S_2CS'Pr)] 4b$	$THF-d_8$	10.8	-3.7 (6 H), -7.1 (6 H) -16.8 (1 H), -21.1 (1 H)
$[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$ 4c	$THF-d_8$	11.7	-5.0 (9 H), -7.6 (9 H)
$[U(Cp^*)_2(S_2CSMe)_2] 5a$	$THF-d_8$	18.6	-9.5 (6 H)
$[U(Cp^*)_2(S_2CS'Bu)_2]$ 5c	$THF-d_8$	17.8	-3.9 (18 H)
$[U(Cp^*)_2(O_2CS'Bu)(S_2CS'Bu)] 6$	$\text{THF-}d_8$	6.5	5.5 (9 H), -4.7 (9 H)
$[U(Cp^*)_2(I)(S_2CS^tBu)] 7$	$THF-d_8$	16.3	-9.7 (9 H)
$Na[U(Cp^*)_2(O_2CS'Bu)_2]$ 8	$THF-d_8$	-5.2	-3.9 (18 H)
$[U(Cp^*)_2(I)(O_2CS'Bu)]$	$\text{THF-}d_8$	14.4	-12.4 (9 H)

^a At 30°C, δ relative to TMS. When not specified, the signals are singlets with half-height widths between 10 and 30 Hz.

^b Integrates for 30 H.

^c In a mixture of [U(Cp*)₂(Cl)₂] and [U(Cp*)₂(SR)₂].

Once complex 4 was formed, further insertion of CS_2 into the remaining U–S thiolate bond was rather difficult and required much more drastic conditions. The dark red bis trithiocarbonates [U(Cp*)₂(S₂CSMe)₂] **5a** and [U(Cp*)₂(S₂CS'Bu)₂] **5c** were synthesized in an 88 and 51% yield, respectively, by refluxing a CS₂ solution of **4a** for 3 days and a solution of **4c** in a 1:1 mixture of THF and CS₂ for 30 days.

Reactions of 1c with CO₂, which gave 2c and 3c, thus appeared much more rapid than reactions with CS₂, leading to 4c and 5c. Insertion of CO₂ into the U–S thiolate bond of 4c was also much faster than the CS₂ insertion and was complete after 30 min under normal conditions; the mixed insertion complex $[U(Cp^*)_2(O_2CS'Bu)(S_2CS'Bu)]$ 6 was isolated as a dark red powder in a 95% yield. This distinct reactivity of CO_2 and CS_2 is possibly related to the oxophilic character of uranium which would favour initial coordination of carbon dioxide onto the metal centre, before migration of the SR group [10].

2.3. Reactions of the CO_2 and CS_2 insertion compounds

The bis insertion compounds 3c and 5c were quite stable in solution and in the solid state at 20°C but their thermolysis led to elimination of CO₂ and CS₂. Sealed NMR tubes containing THF solutions of these compounds were heated at 65°C and after 10 h, 54% of 3cwas converted into 2c whereas 10% of 5c was trans-

Table 4 Crystallographic data and experimental details for $[U(Cp^*)_2(SMe)_2]$ **1a** and $[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$ **4c**

	[U(Cp*) ₂ (SMe) ₂]	$[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$
Crystal data		
Empirical formula	$C_{22}H_{36}S_2U$	$C_{29}H_{48}S_4U$
M^{-1}	602.69	762.99
Crystal dimensions (mm ³)	$0.50 \times 0.35 \times 0.25$	$0.55 \times 0.50 \times 0.50$
Colour	Dark red	Dark brown
Crystal system	Orthorhombic	Monoclinic
Space group	Pbcn	$P2_1/n$
a (Å)	14.230(3)	12.822(4)
b (Å)	9.585(3)	16.982(3)
<i>c</i> (Å)	16.422(4)	15.263(4)
β (°)		102.22(5)
$V(\text{\AA}^3)$	2240(2)	3248(3)
Z	4	4
$D_{\text{calc.}}$ (g cm ⁻³)	1.787	1.56
μ (Mo-K _a) (cm ⁻¹)	70.54	50.01
<i>F</i> (000)	1168	1512
Data collection		
Temperature (K)	213	294
θ limits (°)	1, 25	1, 22
Scan type	$\omega, 2\theta$	$\omega, 2\theta$
Scan width	$0.8 \pm 0.35 \tan \theta$	$0.8 \pm 0.35 \tan \theta$
Range of abs. trans.	0.670, 0.999	0.783, 0.999
Range of h, k, l	0 to 11, 0 to 17, 0 to -19	0 to 13, 0 to 17, -16 to 16
Reflections collected		
Total	2359	4585
Unique	1980	3977
with $I > 3\sigma(I)$	1084	2834
Number of parameters	59	307
$R = \Sigma F_{\rm o} - F_{\rm c} / \Sigma F_{\rm o} $	0.030	0.042
$Rw = [\Sigma w F_o - F_c ^2 / \Sigma w (F_o)^2]^{1/2}$	0.053	0.054
$w = 1/(\sigma F)^2 = 4F^2/[\sigma I^2 + (pF^2)^2]^{1/2}$	w = 1	w = 1
Max. residual electron density (e $Å^{-3}$)	0.934	0.899

formed into 4c; upon cooling at r.t., 3c was entirely recovered, following re-insertion of CO₂ into the U–S bond of 2c. From these results, it was not surprising

Table 5

Fractional atomic coordinates, thermal parameters and their estimated standard deviations for $[U(Cp^\ast)_2(SMe)_2] \ 1a$

Atom	x	у	Ζ	B(A2)
U	0.000	-0.18127(5)	0.250	1.702(9)*
S	-0.1389(2)	-0.3633(3)	0.2436(2)	3.16(6)*
C(1)	0.0339(7)	-0.201(1)	0.4160(6)	1.0(2)
C(2)	-0.0494(8)	-0.147(1)	0.4083(7)	1.7(2)
C(3)	-0.0522(8)	-0.013(1)	0.3752(7)	2.3(2)
C(4)	0.0440(8)	0.020(1)	0.3615(6)	1.5(2)
C(5)	0.0973(8)	-0.099(1)	0.3863(6)	2.0(2)
C(6)	0.060(1)	-0.334(1)	0.4561(8)	3.7(3)
C(7)	-0.141(1)	-0.210(1)	0.4406(9)	3.7(3)
C(8)	-0.1328(9)	0.085(1)	0.3657(7)	2.9(2)
C(9)	0.080(1)	0.161(1)	0.3383(8)	3.3(3)
C(10)	0.2021(8)	-0.103(1)	0.3886(7)	3.2(3)
C(11)	-0.113(1)	-0.504(1)	0.3136(9)	3.9(3)

* $B_{\rm eq} = (4/3)\Sigma_i\Sigma_j\beta_i ija_ia_j$.

to observe the interconversion of complexes 3c, 5c and 6 in the presence of an excess of CO_2 or CS_2 .

Treatment of **4c** with 0.5 equivalents of I₂ gave the iodo-trithiocarbonate complex $[U(Cp^*)_2(I)(S_2CS'Bu)]$ **7** which was alternatively synthesized by iodonolysis of the bis insertion compound **5c**, and isolated as red microcrystals in a 82% yield. After the synthesis of $[U(Cp)_3(I)]$ from $[U(Cp)_3(S'Pr)]$ [2] and $[U(I)_2(S'Pr)_2$. $(NC_5H_5)_3]$ from $[U(S'Pr)_4]$ [11], these reactions provide further examples of the cleavage of U–S bonds with iodine. The O₂CS'Bu ligand of the mixed insertion compound **6** was selectively displaced by I₂, giving **7**, and $[U(Cp^*)_2(I)(O_2CS'Bu)]$ was obtained from **3c** (NMR experiments).

Reduction of **4c** and **5c** by means of sodium amalgam was not straightforward, leading to the formation of unidentified products. In contrast, **3c** cleanly reacted with Na(Hg) to give the corresponding anionic U(III) complex Na[U(Cp*)₂(O₂CS'Bu)₂] **8**, which was isolated as brown microcrystals in a 65% yield. Table 6

Fractional atomic coordinates, thermal parameters and their estimated standard deviations for $[U(Cp^{\ast})_2(S'Bu)(S_2CS'Bu)]$ 4c

Atom	x	у	Ζ	B(A2)*
U	0.09927(4)	0.13580(3)	0.27331(4)	2.72(1)
S(1)	-0.0275(3)	0.2546(3)	0.2915(3)	4.15(9)
S(2)	0.3197(3)	0.1053(2)	0.2699(3)	3.72(9)
S(3)	0.2458(3)	0.2612(3)	0.3143(4)	5.0(1)
S(4)	0.4647(3)	0.2477(3)	0.3000(3)	4.8(1)
C(1)	0.120(1)	0.1184(9)	0.4547(8)	3.5(4)
C(2)	0.194(1)	0.0663(9)	0.434(1)	3.8(4)
C(3)	0.138(1)	0.0048(9)	0.381(1)	4.1(4)
C(4)	0.029(1)	0.022(1)	0.373(1)	4.8(4)
C(5)	0.018(1)	0.091(1)	0.417(1)	4.8(4)
C(6)	0.150(2)	0.188(1)	0.515(1)	7.0(6)
C(7)	0.310(1)	0.064(1)	0.476(1)	6.6(6)
C(8)	0.185(2)	-0.067(1)	0.350(1)	6.2(5)
C(9)	-0.064(1)	-0.033(1)	0.337(1)	8.5(5)
C(10)	-0.083(1)	0.123(2)	0.436(1)	9.9(7)
C(11)	0.113(1)	0.141(1)	0.095(1)	4.4(4)
C(12)	0.111(1)	0.0594(9)	0.115(1)	4.2(4)
C(13)	0.010(1)	0.041(1)	0.127(1)	4.2(4)
C(14)	-0.049(1)	0.109(1)	0.121(1)	4.1(4)
C(15)	0.010(1)	0.172(1)	0.0975(9)	3.8(4)
C(16)	0.199(1)	0.186(1)	0.064(1)	7.3(6)
C(17)	0.194(2)	0.001(1)	0.104(1)	7.2(5)
C(18)	-0.030(2)	-0.043(1)	0.131(1)	8.1(7)
C(19)	-0.165(1)	0.115(1)	0.122(1)	7.8(6)
C(20)	-0.025(2)	0.252(1)	0.068(1)	8.0(6)
C(21)	-0.021(1)	0.361(1)	0.314(1)	5.6(5)
C(22)	-0.128(1)	0.392(1)	0.300(2)	10.4(9)
C(23)	0.049(2)	0.382(1)	0.394(2)	10.9(9)
C(24)	0.033(2)	0.402(1)	0.244(1)	7.8(6)
C(25)	0.345(1)	0.1995(9)	0.294(1)	3.2(3)
C(26)	0.568(1)	0.1822(9)	0.277(1)	3.8(4)
C(27)	0.538(1)	0.147(1)	0.182(1)	6.5(5)
C(28)	0.594(1)	0.117(1)	0.346(1)	6.3(5)
C(29)	0.661(1)	0.237(1)	0.285(1)	6.3(5)

* $B_{\rm eq} = (4/3)\Sigma_i \Sigma_j \beta i j a_i a_j$.

3. Conclusion

The synthesis of the complexes $[U(Cp^*)_2(SR)_2]$ permitted the study of the insertion reactions of CO₂ and CS₂ into the U–S bond. The thiocarboxylate products were much more stable than in the triscyclopentadienyl series and could be isolated and characterized. The crystal structure of $[U(Cp^*)_2(S'Bu)(S_2CS'Bu)]$ was determined; $[U(Cp^*)_2(O_2CS'Bu)_2]$ is the first complex isolated from the insertion of carbon dioxide into a metal–sulfur bond. Insertion of CS₂ was much slower than insertion of CO₂; both reactions were reversible.

4. Experimental

4.1. General methods

All preparations and reactions were carried out un-

der argon (less than 5 ppm oxygen or water) using standard Schlenk-vessel and vacuum-line techniques or in a glove box. Solvents were thoroughly dried and deoxygenated by standard methods and distilled immediately before use. Deuterated solvents were dried over Na-K alloy.

Elemental analyses were performed by Analytische Laboratorien at Lindlar (Germany). The ¹H-NMR spectra were recorded on a Bruker DPX 200 instrument and were referenced internally using the residual protio solvent resonances relative to TMS (δ 0). Analytical and NMR data are given in Tables 2 and 3.

The commercial thiols (Aldrich and Janssen) were dried over molecular sieves. The NaSR reagents were obtained as white powders by reaction of sodium with a slight excess (1.1 equivalents) of the corresponding thiol in THF. The complex $[U(Cp^*)_2(Cl)_2]$ was prepared as described in Ref. [12].

4.2. Synthesis of [U(Cp*)₂(SMe)₂] 1a

A round-bottomed flask was charged with $[U(Cp^*)_2(Cl)_2]$ (662 mg, 1.14 mmol) and NaSMe (240 mg, 3.42 mmol) and toluene (50 ml) was condensed into the mixture at -78° C under vacuum. The reaction mixture was stirred for 3 days at 60°C and, after filtration, the solution was evaporated to dryness, leaving a dark red microcrystalline powder of **1a** (548 mg, 80%).

4.3. Synthesis of $[U(Cp^*)_2(SR)_2]$ $(R = {}^iPr, 1b; R = {}^tBu, 1c; R = Ph, 1d)$

4.3.1. 1b

A round-bottomed flask was charged with $[U(Cp^*)_2(Cl)_2]$ (428 mg, 0.74 mmol) and NaS'Pr (145 mg, 1.48 mmol) and THF (50 ml) was condensed into the mixture at -78° C under vacuum. The reaction mixture was stirred for 10 h at 20°C. The solvent was evaporated off and **1b** was extracted in pentane (50 ml) and isolated as a dark red microcrystalline powder after drying under vacuum (386 mg, 79%).

4.3.2. 1c

By following the same procedure, the reaction of $[U(Cp^*)_2(Cl)_2]$ (803 mg, 1.39 mmol) and NaS'Bu (465 mg, 4.15 mmol) gave **1c** (813 mg, 85%).

4.3.3. 1d

By following the same procedure, the reaction of $[U(Cp^*)_2(Cl)_2]$ (503 mg, 0.87 mmol) and NaSPh (304 mg, 2.30 mmol) gave **1d** (491 mg, 78%).

The above reactions were monitored by NMR and the complexes $[U(Cp^*)_2(Cl)(SR)]$ were found to be intermediates.

4.4. Formation of $[U(Cp^*)_2(Cl)(S^iPr)]$

4.4.1. Procedure (a)

An NMR tube was charged with $[U(Cp^*)_2(Cl)_2]$ (14.8 mg, 25.5 µmol) and NaS'Pr (2.5 mg, 25.5 µmol) in THF- d_8 (0.35 ml). After 30 min at 20°C the spectrum showed the presence of $[U(Cp^*)_2(Cl)(S'Pr)]$, $[U(Cp^*)_2(Cl)_2]$ and **1b** in the proportions 90:5:5.

4.4.2. *Procedure* (b)

An NMR tube was charged with $[U(Cp^*)_2(Cl)_2]$ (4.8 mg, 8.3 µmol) and **1b** (5.5 mg, 8.3 µmol) in THF- d_8 (0.35 ml). After 30 min at 20°C the spectrum showed the presence of the same mixture as in (a).

4.5. Synthesis of $[U(Cp^*)_2(O_2CS^tBu)_2]$ 3c

A round-bottomed flask was charged with 1c (176.4 mg, 0.25 mmol) and THF (20 ml) was condensed into it at -78° C under vacuum; the flask was pressurised with CO₂ (1 atm.). The solution was stirred for 30 min at 20°C and after evaporation to dryness at 20°C, 3c was isolated as a red–orange powder (195 mg, 98%).IR (nujol): 1311, 1162, 848 cm⁻¹.

4.6. Formation of $[U(Cp^*)_2(S^tBu)(O_2CS^tBu)]$ 2c

An NMR tube was charged with 1c (7.8 mg, 11 μ mol) and 3c (8.8 mg, 11 μ mol) in THF- d_8 (0.35 ml). After 30 min at 20°C, the spectrum showed the presence of 2c, 1c and 3c in the proportions of 80:10:10.

4.7. Reactions of 1a and 1b with CS_2

An NMR tube was charged with 1a or 1b (ca. 10 mg) and 1.5 equivalents of CS₂ in toluene- d_8 (0.3 ml). After 5 h at 70°C the spectrum showed that 1a and 1b were completely transformed into 4a and 4b, respectively.

4.8. Synthesis of $[U(Cp^*)_2(S^tBu)(S_2CS^tBu)]$ 4c

A round-bottomed flask was charged with 1c (607 mg, 0.88 mmol) and CS₂ (69 μ l, 1.15 mmol) and toluene (100 ml) was condensed into the mixture at -78° C under vacuum. The mixture was stirred for 48 h at 65°C. The solution was filtered and evaporated, leaving 4c as a dark brown microcrystalline powder (596 mg, 89%).

4.9. Synthesis of $[U(Cp^*)_2(S_2CSMe)_2]$ **5a** and $[U(Cp^*)_2(S_2CS^tBu)_2]$ **5c**

4.9.1. **5**a

A round-bottomed flask was charged with 1a (192 mg, 0.3 mmol) in CS₂ (3.2 ml). After refluxing for 3

days, THF (30 ml) was added; the solution was filtered, evaporated to dryness, and the dark red microcrystalline powder of 5a was washed with pentane (10 ml) and dried under vacuum (135 mg, 88%).

4.9.2. 5c

A round-bottomed flask was charged with 1c (300 mg, 0.43 mmol) in a mixture of CS_2 (3.2 ml) and THF (4 ml). After stirring for 30 days at 65°C, THF (30 ml) was added; the solution was filtered, evaporated to dryness, and the dark brown microcrystalline powder of 5c was washed with pentane (20 ml) and dried under vacuum (185 mg, 51%). IR (nujol): 1024, 994, 863 cm⁻¹.

4.10. Synthesis of $[U(Cp^*)_2(O_2CS^tBu)(S_2CS^tBu)]$ 6

A round-bottomed flask was charged with 4c (209 mg, 0.27 mmol) and THF (30 ml) was condensed into the mixture at -78° C under vacuum; the flask was pressurised with CO₂ (1 atm). The solution was stirred for 30 min at 20°C and after evaporation to dryness, **6** was isolated as a red orange powder (210 mg, 95%).

4.11. Thermolysis of 3c and 5c

4.11.1. **3**c

An NMR tube was charged with 3c (ca. 10 mg, 13 μ mol) in THF- d_8 (0.35 ml) and heated for 2 h under vigorous reflux. Immediate spectrum showed that 54% of 3c was transformed into 2c; upon cooling at 30°C 3c was completely recovered.

4.11.2. 5c

An NMR tube charged with **5c** (ca. 10 mg, 12 μ mol) in THF- d_8 (0.35 ml) was heated at 65°C. After 10 h, the spectrum showed that 10% of **5c** was converted into **4c**.

4.12. Interconversion of 3c, 5c and 6 in the presence of CO_2 or CS_2

4.12.1. Procedure (a)

An NMR tube was charged with **3c** (ca. 10 mg, 13 μ mol) in a mixture of CS₂ (0.2 ml) and THF- d_8 (0.2 ml). After 10 h at 65°C, the spectrum showed the presence of **4c** (6%), **5c** (14%) and **6** (56%) plus 24% of unidentified products.

4.12.2. Procedure (b)

An NMR tube was charged with 5c (ca. 10 mg, 12 μ mol) in THF- d_8 (0.35 ml) and pressurised with CO₂. After 10 h at 65°C, the spectrum showed the presence of 3c (35%) and 6 (65%).

4.13. Synthesis of $[U(Cp^*)_2(I)(S_2CS^tBu)]$ 7

A round-bottomed flask was charged with 4c (231.7 mg, 0.30 mmol) and I_2 (39 mg, 0.15 mmol) and THF (50 ml) was condensed into it at -78° C under vacuum. The reaction mixture was stirred for 24 h at 20°C. After filtration, the solution was evaporated to dryness and 7 was isolated as a red microcrystalline powder (209 mg, 86%).

4.14. Reactions of 3c, 5c and 6 with I_2

4.14.1. Reaction of 3c

An NMR tube was charged with **3c** (6.0 mg, 7.7 μ mol) and I₂ (1.0 mg, 3.9 μ mol) in THF-*d*₈ (0.35 ml). After 1 h at 20°C, the spectrum showed that **3c** had completely transformed into [U(Cp^{*})₂(I)(O₂CS'Bu)].

4.14.2. Reaction of 5c

An NMR tube was charged with **5c** (8 mg, 9.5 μ mol) and I₂ (1.2 mg, 4.7 μ mol) in THF-*d*₈ (0.35 ml). After 1 h at 20°C, the spectrum showed that 7 had formed in an almost quantitative yield.

4.14.3. Reaction of **6**

An NMR tube was charged with **6** (10 mg, 12.4 μ mol) and I₂ (1.6 mg, 6.3 μ mol) in THF- d_8 (0.35 ml). After 1 h at 20°C, the spectrum showed that 7 had formed in an almost quantitative yield.

4.15. Synthesis of $Na[U(Cp^*)_2(O_2CS^tBu)_2]$ 8

A round-bottomed flask was charged with 3c (248 mg, 0.32 mmol) and 1% Na(Hg) (375 mg, 0.32 mmol of Na) and THF was condensed into the mixture at -78° C under vacuum. The reaction mixture was stirred for 10 h at 20°C and the solution was filtered and evaporated to dryness, leaving **8** as a dark brown microcrystalline powder (168 mg, 65%).

4.16. X-ray crystal structures of 1a and 4c

Crystals of **1a** and **4c** were obtained by crystallization from pentane. Selected single crystals were introduced into thin-walled Lindemann glass tubes in the glove box. Data were collected on an Enraf-Nonoius CAD-4 diffractometer equipped with a graphite monochromator $[\lambda(Mo-K_{\alpha}) = 0.71073 \text{ Å}]$. The cell parameters were obtained by a least squares refinement of the setting angles of 25 reflections with θ between 8 and 12°. Three

standard reflections were measured after every hour; a decay was observed (25% in 25 h for 1a and 39% in 72 h for 4c) and linearly corrected. The data were corrected for Lorentz polarization effects and absorption [13]. The structure was solved by the heavy-atom method and refined by full matrix least squares on Fwith anisotropic thermal parameters (U and S atoms for 1a and all atoms for 4c); H atoms were introduced at calculated positions $(C-H = 0.95 \text{ Å}, B = 6 \text{ Å}^2)$ and constrained to ride on their parent carbon atoms. All calculations were performed on a Vax 4000-200 computer with the Enraf-Nonius MolEN system [14]. Molecular graphics were made with the SHELXTL package [15]. Analytical scattering factors for neutral atoms were corrected for both $\Delta f'$ and $\Delta f''$ components of anomalous dispersion [16]. Crystallographic data are given in Table 4 and final positional parameters in Tables 5 and 6.

References

- P.C. Leverd, T. Arliguie, M. Lance, M. Nierlich, J. Vigner, M. Ephritikhine, J. Chem. Soc. Dalton Trans. (1994) 501.
- [2] P.C. Leverd, M. Ephritikhine, M. Lance, J. Vigner, M. Nierlich, J. Organomet. Chem. 507 (1996) 229.
- [3] F.T. Edelmann, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 4, Pergamon, Oxford, 1995, p. 11.
- [4] (a) R.G. Jones, G. Karmas, G.A. Martin, jun., H. Gilman, J. Am. Chem. Soc. 78 (1956) 4285. (b) P.C. Leverd, M. Lance, J. Vigner, M. Nierlich, M. Ephritikhine, J. Chem. Soc. Dalton Trans. (1995) 237.
- [5] Z. Lin, C.P. Brock, T.J. Marks, Inorg. Chim Acta 141 (1998) 145.
- [6] J.D. Jamerson, J. Takats, J. Organomet. Chem. 78 (1974) c23.
- [7] I.S. Butler, A.E. Fenster, J. Organomet. Chem. 66 (1974) 161.
- [8] K. Tatsumi, I. Matsubara, Y. Inoue, A. Nakamura, R.E. Cramer, G.J. Tagoshi, J.A. Golen, J.W. Gilje, Inorg. Chem. 29 (1990) 4928.
- [9] C. Boisson, J.C. Berthet, M. Ephritikhine, M. Lance, M. Nierlich, J. Organomet. Chem. 522 (1996) 249.
- [10] N. Kano, N. Tokitoh, R. Okazaki, Organometallics 17 (1998) 1241.
- [11] P.C. Leverd, M. Lance, J. Vigner, M. Nierlich, M. Ephritihine, J. Chem. Soc. Dalton Trans. (1995) 237.
- [12] P.J. Fagan, J.M. Manriquez, E.A. Maatta, A.M. Seyam, T.J. Marks, J. Am. Chem. Soc. 103 (1981) 6650.
- [13] A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Crystallogr. Sect. A24 (1968) 351.
- [14] MolEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, 1990.
- [15] SHELXTL, Version 5.03, Bruker, Madison, 1997.
- [16] International Tables for X-ray Crystallography. Vol. IV, Kynoch Press, Birmingham, 1974 (present distributor: Academic Publishers, Dordrecht).